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The control of the light trajectories in a liquid crystal is studied through a theoretical model based in the
variation of the molecular orientation of a ferronematic material. In this model, the director field is mapped into
a Riemannian space where the light paths are obtained numerically through the calculation of the geodesics for
the effective geometry perceived by light.
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I. INTRODUCTION

The liquid crystals �1� are used in large scale by the cur-
rent industry due to their potential for technological applica-
tions. As a large number of applications come from the op-
tical response of these materials �2�, the study of the light
propagation in liquid-crystalline media has great relevance.
For the light, the liquid crystals constitute an inhomogeneous
space �birefringence� �3� that in general has orientation de-
fined by boundary conditions to which the liquid crystal is
subjected. We previously developed in �4� a theoretical
model to describe the light propagation in nematics with mo-
lecular orientation imposed by the presence of topological
defects �5�. In this model �4�, the light rays are interpreted as
being geodesics in the Riemannian space �6� into which the
optical medium composed by the nematic is mapped. The
trajectories �7� are obtained from a metric �line element� as-
sociated with the effective geometry perceived by light. As a
result, we have a lensing effect whose control can be deter-
mined simply by a topological parameter of the system.

Another system that can be modeled in a similar way is
what results from the introduction of a magnetic material
�ferroparticles� in the composition of a nematic liquid crystal
�8�. From this mixture, we have the ferronematics �9�, whose
ability to align under the action of magnetic fields �10� al-
lows the manipulation of its molecular configuration. In gen-
eral, the physical properties of liquid crystals depend on the
molecular orientation displayed at each phase �11�. There-
fore, the variation of parameters such as temperature or mag-
netic field acts as a way to change these properties through
the induction of orientational order.

In this paper, we perform a study of the light trajectories
in a ferronematic cell using the model proposed in �4�. The
light trajectories are calculated numerically and the control
parameter that characterizes the changes in the effective ge-
ometry perceived by light is given by the magnetic field H�
applied.

II. THEORETICAL MODEL

The purpose of the model described in this section is to
give us a geometric description for the light trajectories in a

liquid crystal. The main idea of model is in the comparison
of Fermat’s principle to the variational principle that deter-
mines the geodesics in the Riemannian geometry. From Fer-
mat’s principle, we have that the length of the optical path
traveled by a light beam can be calculated by

F = �
A

B

Nd� , �1�

where d� is the element of arc length along the path between
points A and B. Then, among all possible paths between the
generic points A and B, Fermat’s principle for the extraordi-
nary rays grants us that the path actually followed by the
energy is the one that minimizes F. In Eq. �1�, the effective
refractive index N felt by the light �3� is given by a function
that depends on the local position and local direction of the
light beam

N2 = no
2 cos2 � + ne

2 sin2 � , �2�

where �= �n� ,S�̂� is the local angle between the director n� and

the Poynting vector S� �see Fig. 1 of �4��, no is the ordinary
refractive index, and ne is the extraordinary refractive index
of the molecule of liquid crystal. The refraction angle � is
given by the scalar product between the director n� and the

local propagation direction of the beam T� tangent to the tra-
jectory, therefore
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FIG. 1. Molecular orientation � of ferronematic cell under the

influence of the magnetic field applied H� .
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cos � = n� · T� , �3�

where T� is unitary and is in the direction of S� in each point.
In Riemannian geometry, the line element ds depends on

the position coordinates xi of the point of the manifold under
consideration, that is,

ds2 = �
i,j

gijdxidxj , �4�

where gij =gij�xi� is the metric tensor. The geodesic joining
points A and B in such manifold are obtained by minimizing
�ds, just like Fermat’s principle. This leads to a nice inter-
pretation of the light paths as geodesics in an effective ge-
ometry. Thus, we may identify

N2d�2 = �
i,j

gijdxidxj . �5�

The meaning of this equation is the following: the line ele-
ment of the optical path, in a Euclidean space with refractive
properties, is identified with the line element of an effective
geometry characterized by gij.

As no and ne are functions of T, the temperature is in-
cluded �12� as a parameter of characterization of the geom-
etry �13� effective by

no = �n	 −
1

3
�n , �6�

ne = �n	 +
2

3
�n , �7�

given in terms of the birefringence �n and of its average
value �n	. In Eqs. �6� and �7�, the behavior of �n	 as function
of the temperature �12� is given experimentally through a
linear dependence given by

�n	 = A − BT , �8�

where the parameters A and B are obtained experimentally.
The birefringence can be written in terms of the approxi-
mated order parameter �14� S= �1− T

Tc
�� as

�n = ��n�0
1 −
T

Tc
��

, �9�

where ��n�0 is the birefringence in the crystalline state, � is
a constant associated to the material, and Tc is the isotropic-
nematic transition temperature. Therefore, substituting the
Eqs. �8� and �9� into Eqs. �6� and �7�, we have

no = A − BT −
��n�0

3

1 −

T

Tc
��

�10�

and

ne = A − BT +
2��n�0

3

1 −

T

Tc
��

. �11�

Through the expressions �10� and �11� for the refractive
indices of the molecule and the expression for the refractive
angle � in a specific coordinates system, we can calculate the
effective refractive index N and the coefficients of the metric

tensor gij using the Eq. �5�. With gij, we have the Riemann-
ian line element given by Eq. �4� from which we calculate
the geodesics equations �6� with

d2xi

dt2 + �
j,k

� jk
i dxj

dt

dxk

dt
= 0, �12�

where t is a parameter along the geodesic and � jk
i are the

Christoffel symbols given by

� jk
i =

1

2�
m

gmi� �gkm

�xj +
�gmj

�xk −
�gjk

�xm . �13�

III. EFFECTIVE GEOMETRY

We can use the geometric model described previously to
find the light paths in a ferronematic material. The optical
medium considered consists of a ferronematic cell with
thickness d�250 �m from a mixture of magnetic particles
added to the nematic liquid crystal 5CB or 4-cyano-4-n-
pentylbiphenyl �15–17�. The molecular structure of the cell
is given by the geometry �in the equilibrium� of the ferrone-
matic studied in �18�, whose orientation under the influence
of the external magnetic field H� is given by �19�

��y� = � =
Msf0H�d − y�y

8k33
, �14�

considering the limit of small distortions of the director n�
related to the initial position where H� =0 �see Fig. 1�. In the
solution presented by the Eq. �14�, fo is the volume concen-
tration of ferroparticles in nematic, d is the thickness of the
sample �ferronematic layer�, Ms is the saturation magnetiza-
tion of ferroparticles, and k33 is the Frank elastic constant.

The components of the director are given by

nx = − sin � ,

ny = cos � , �15�

and the refractive angle � is calculated by the Eq. �3� where
T� is given by T� = �ẋ , ẏ� �20�. Substituting the expression
found for � in Eq. �2�, we have the effective refractive index
N. With that, we calculate the coefficients of the metric ten-
sor gij through Eq. �5� so that

g11 = no
2 sin2 � + ne

2 cos2 � ,

g12 = g21 =
�ne

2 − no
2�

2
sin 2� ,

g22 = no
2 cos2 � + ne

2 sin2 � . �16�

Thus, the effective metric is given by

ds2 = �no
2 sin2 � + ne

2 cos2 ��dx2 + �no
2 cos2 � + ne

2 sin2 ��dy2

+ �ne
2 − no

2�sin 2�dxdy . �17�

With the metric �17�, we can find the system of equations
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whose solution gives us the light paths in the ferronematic
cell through the Eqs. �12� and �13�.

IV. DEFLECTION OF THE LIGHT

To solve the geodesics equations, we need the parameter
sets that characterize the ferronematic cell built with the
5CB. The refractive indices �10� and �11� of 5CB are char-
acterized by the parameters given in the table below obtained
from �12�.

A B � ��n�0 Tc

1.7546 0.0005360 K−1 0.2391 0.3768 306.6 K

The parameters A, B, �, and ��n�0 are adimensionals. To
define the orientation angle � of the ferronematic, we have
the saturation magnetization Ms=485 G, the volume con-
centration of ferroparticles f0=3.6�10−7, and the Frank
elastic constant k33=5.3�10−7 dyn, whose values are valid
for a temperature T=25 °C �21�. Under these conditions, we
have ne=1.701 and no=1.542.

The numerical method used in the resolution of the geo-
desics equations was the Runge-Kutta of the fourth order. In
Figs. 2–4, we can see the deflection of light caused by mo-
lecular distortion resulting from the application of external
field H� . The incidence direction of the beams is the positive
direction of the axis ŷ in accordance with the coordinates
system defined in Fig. 1. In Fig. 2, we have four trajectories
�solid line� calculated for an applied field of intensity 7000
A/m and in Figs. 3 and 4, we can see the trajectories ob-
tained previously as the applied field intensity increases to
10000 A/m �dashed line� and 13000 A/m �dotted line�, re-
spectively.

The deflection of the beams can be measured in a quanti-
tative form through the scalar curvature �6� perceived by the
light. From the metric �17� and of the Christoffel symbols
given in Eq. �13�, we have that

R = ��Msf0H�d − 2y�2 cos 2� + 8k33 sin 2�� , �18�

with

� =
Msf0�no

2 − ne
2�

32k33
2 no

2ne
2 . �19�

Making no=ne in Eq. �18� �isotropic case�, we have R=0
which is the effective curvature of the flat space. In this case,
deflections do not occur.

V. CONCLUSION

In this paper, we have a qualitative prediction of the light
behavior in a ferronematic medium through the use of a geo-
metric model constructed from Fermat’s principle and
differential-geometric tools in Riemannian spaces. The ad-
vantage of the geometric method used is in its versatility to

FIG. 2. Light trajectories in the ferronematic cell �solid line�
with a field H=7000 A /m.

FIG. 3. Light trajectories in the ferronematic cell with H
=10 000 A /m �dashed line� along with the previous solution �solid
line� to 7000 A/m.

FIG. 4. Light trajectories in the ferronematic cell with a field
H=13 000 A /m �dotted line� and the before solutions.
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describe the trajectories of light in both ferronematics
samples and in nematics with molecular orientation imposed
by topological defects �4,22�. Furthermore, the method al-
lows us to find the equations for the trajectories so that the
terms d2xi

dt2 of Eq. �12� are always given explicitly, unlike other
methods �see �23��. The trajectories obtained numerically
show the deflections suffered by the light beams traveling
across a ferronematic cell with a nonuniform director. The
deflection level of the beams is proportional to the intensity
of the magnetic field that induces the orientation in the bulk
of the cell. As the molecules of the ferronematic have their
orientation determined by the anchoring conditions and mag-
netic field H� applied, the effect of molecular reorientation
due to the interaction between the optical axis and the polar-
ization of the beam can be neglected in case of low-power

beams �24,25�. A quantitative evaluation �indirect� of the de-
flection level of the beams can be inferred through the effec-
tive curvature R here calculated. Although the presence of
topological defects in nematics causes deviations of the light
beams �4�, the use of ferronematics as a way to control of the
light trajectories is advantageous because the ferronematic
samples can easily be produced experimentally in a con-
trolled and stable way �26�.
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